mouse


Dr David Adams.

MEET THE DMDD TEAM – DAVID ADAMS

In a series of interviews we’re hearing from members of the DMDD programme. Who are they? What inspires them? And what do they hope that DMDD will achieve? This month we hear from David Adams, who oversees the production of embryonic lethal knockout mouse strains for the project. What has […]


NEW EMBRYO PHENOTYPE DATA AVAILABLE

New image and phenotype data for embryos and placentas from embryonic lethal knockout mouse lines has been made available on the DMDD website today. The knockout data includes the ciliary gene Rpgrip1l as well as Atg16l1, a gene encoding a protein that forms part of a larger complex needed for […]


WELLCOME OPEN RESEARCH LAUNCH INCLUDES DMDD EMBRYO PHENOTYPING PAPER

Today sees the launch of Wellcome Open Research, a new publication platform for Wellcome Trust funded researchers. A set of articles released to coincide with the launch includes ‘Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice‘, a publication by the DMDD Programme. It explores the results of systematic efforts by the […]

Wellcome Open Research logo.

Photograph of Professor Elizabeth Robertson

MEET THE DMDD TEAM – LIZ ROBERTSON

  In a new series of interviews we’ll hear from members of the DMDD team. Who are they? What inspires them? And what do they hope that the DMDD programme will achieve? We kick things off with joint grant-holder Liz Robertson.   What has been your main area of research […]


NEW PHENOTYPE SCREEN EXAMINES CAUSES OF NEONATAL DEATH

Around a third of targeted gene knockouts in mice are embryonic-lethal. But not all deaths occur during gestation – a significant number of gene knockouts result in death at or shortly after the time of birth. Mice from these knockout lines provide a valuable animal model of human neonatal death […]

Nesting wild-type pups.

Click to view larger image.

3 NEW RESULTS FROM KNOCKOUT MOUSE SCREENS

Around a third of mammalian genes are essential for life, and the recent Nature paper from the IMPC  ‘High-throughput discovery of novel developmental phenotypes‘ [1] describes some achievements from sytematic study of these genes in knockout mice. Screens like those of the IMPC and DMDD are vital to understand gene […]