CAN WE IDENTIFY MORE GENES WITH LINKS TO MISCARRIAGE?


Around 1 in 4 pregnancies ends in miscarriage, but in many cases a definite cause cannot be found. It’s an all-too-common situation that is heart breaking for parents, and incredibly frustrating for the clinicians involved.

Miscarriage can happen for many reasons, including infection and hormonal imbalances. But around half of all miscarriages that occur before 12 weeks of pregnancy are thought to be caused by a gene mutation or chromosomal abnormality that prevents the baby from developing as it should. One approach to understanding, and potentially preventing, pregnancy loss is to identify gene mutations that have an adverse effect on embryo development. This is an area in which mouse embryo screening programmes such as DMDD and the IMPC can make an important contribution.


EMBRYONIC LETHAL GENES AND MISCARRIAGE

Recurrent miscarriage, the loss of 3 or more consecutive pregnancies, affects around 1% of couples who are trying to conceive. The condition has already been linked to mutations in several genes, including F2, F5 and ANXA5, which are all involved in blood clotting. This suggests that there may be other genes linked to miscarriage that have not yet been discovered.

The DMDD programme studies the effect of inactivating single genes in mouse embryos. For each inactivated gene, we record any abnormalities in the embryo’s development – from brain and heart defects down to tiny problems at the level of individual nerves and blood vessels. Our study is limited to a set of genes called ‘embryonic lethal’. By definition, inactivating any one of these genes causes developmental abnormalities so serious that the embryo is not able to survive past birth. These genes have clear relevance to miscarriage research, and the data we are gathering could be key to understanding more about the genetic causes of pregnancy loss.

 

Click to view larger image.

Detailed imaging of embryos allows us to identify abnormalities down to the level of individual nerves and blood vessels.


CANDIDATE GENES FOR VERY EARLY PREGNANCY LOSS

Around a third of the genes studied by DMDD, if inactivated, cause mouse embryos to die in the very early stages of development. We call these genes ‘early lethal’, and if a mouse embryo is missing any one of them it cannot survive to 9.5 days of gestation. In the mouse, 9.5 days is mid-gestation, but this stage of development is actually comparable with week 4 for a human embryo.

To date we have found more than 60 genes that are lethal in the first 9.5 days of gestation. This data could be a starting point for identifying genes whose mutations might be responsible for miscarriage in the first few weeks of pregnancy.


MISCARRIAGE LATER IN PREGNANCY

DMDD also studies genes that cause mouse embryos to die around 14.5 days of gestation, which is roughly equivalent to week 8 of a human pregnancy. By 14.5 days’ gestation, mouse embryos have grown to around 1cm in length and are big enough for us to look in detail for abnormalities in their development. We see a wide range of problems, but very common abnormalities include abnormalities of the hypoglossal nerve, which controls tongue movement, and a range of different heart defects.

Many of the embryonic lethal genes we have studied at 14.5 days’ gestation have not yet been associated with human disease or miscarriage. The data is available to explore at dmdd.org.uk, and these genes may be interesting candidates for those researching the genetic basis of miscarriage.


Leave a comment

Your email address will not be published. Required fields are marked *